ML.NET and Azure ML Interview Questions: Machine Learning in .NET
January 25, 2025 • ML.NET • Azure ML • Machine Learning • Interview • .NET
Loading...
Loading...
ML.NET brings machine learning capabilities directly into the .NET ecosystem, enabling developers to build, train, and deploy ML models using C# and F#. Combined with Azure ML, it provides a powerful platform for .NET developers to implement machine learning solutions. This guide covers essential ML.NET and Azure ML interview questions for .NET developers entering the AI/ML space.
ML.NET Fundamentals
What is ML.NET and When to Use It?
ML.NET is an open-source, cross-platform machine learning framework for .NET developers. It allows you to create custom ML models using C# or F# without leaving the .NET ecosystem.
Use ML.NET when:
- You want to keep everything in .NET (no Python dependencies)
- You need to integrate ML directly into existing .NET applications
- You're working with structured data (tabular data, text classification)
- You want to train models locally without cloud services
- You need models that can run on edge devices
ML.NET Pipeline Architecture
Understanding the ML.NET pipeline is essential:
using Microsoft.ML;
using Microsoft.ML.Data;
// 1. Create MLContext
var mlContext = new MLContext();
// 2. Load data
var data = mlContext.Data.LoadFromTextFile<SentimentData>(
path: "sentiment-data.csv",
hasHeader: true,
separatorChar: ','
);
// 3. Split data
var dataSplit = mlContext.Data.TrainTestSplit(data, testFraction: 0.2);
// 4. Define pipeline
var pipeline = mlContext.Transforms.Text.FeaturizeText(
outputColumnName: "Features",
inputColumnName: "SentimentText")
.Append(mlContext.BinaryClassification.Trainers.SdcaLogisticRegression(
labelColumnName: "Label",
featureColumnName: "Features"));
// 5. Train model
var model = pipeline.Fit(dataSplit.TrainSet);
// 6. Evaluate
var predictions = model.Transform(dataSplit.TestSet);
var metrics = mlContext.BinaryClassification.Evaluate(predictions);
Console.WriteLine($"Accuracy: {metrics.Accuracy}");
// 7. Save model
mlContext.Model.Save(model, data.Schema, "sentiment-model.zip");
// 8. Load and use for prediction
var predictionEngine = mlContext.Model.CreatePredictionEngine<SentimentData, SentimentPrediction>(model);
var prediction = predictionEngine.Predict(new SentimentData
{
SentimentText = "This is great!"
});
Console.WriteLine($"Prediction: {prediction.Prediction}");Common ML.NET Tasks
Binary Classification Example
Binary classification is one of the most common ML tasks:
// Define data classes
public class SpamData
{
[LoadColumn(0)]
public string Message { get; set; }
[LoadColumn(1)]
public bool IsSpam { get; set; }
}
public class SpamPrediction
{
[ColumnName("PredictedLabel")]
public bool Prediction { get; set; }
public float Probability { get; set; }
public float Score { get; set; }
}
// Training pipeline
var mlContext = new MLContext(seed: 0);
var data = mlContext.Data.LoadFromTextFile<SpamData>("spam-data.csv", hasHeader: true, separatorChar: ',');
var pipeline = mlContext.Transforms.Text.FeaturizeText(
outputColumnName: "Features",
inputColumnName: "Message")
.Append(mlContext.BinaryClassification.Trainers.SdcaLogisticRegression(
labelColumnName: "IsSpam",
featureColumnName: "Features"));
var model = pipeline.Fit(data);
var metrics = mlContext.BinaryClassification.Evaluate(
model.Transform(data),
labelColumnName: "IsSpam");
Console.WriteLine($"Accuracy: {metrics.Accuracy:P2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:P2}");Regression Example
public class HouseData
{
[LoadColumn(0)]
public float Size { get; set; }
[LoadColumn(1)]
public float Bedrooms { get; set; }
[LoadColumn(2)]
public float Price { get; set; }
}
public class HousePrediction
{
[ColumnName("Score")]
public float Price { get; set; }
}
var mlContext = new MLContext();
var data = mlContext.Data.LoadFromTextFile<HouseData>("houses.csv", hasHeader: true);
var pipeline = mlContext.Transforms.Concatenate("Features", "Size", "Bedrooms")
.Append(mlContext.Regression.Trainers.Sdca(
labelColumnName: "Price",
featureColumnName: "Features"));
var model = pipeline.Fit(data);
var predictionEngine = mlContext.Model.CreatePredictionEngine<HouseData, HousePrediction>(model);
var prediction = predictionEngine.Predict(new HouseData
{
Size = 2000,
Bedrooms = 3
});
Console.WriteLine($"Predicted Price: ${prediction.Price:F2}");Integrating ML.NET with Azure ML
Training Models in Azure ML
You can train ML.NET models in Azure ML for scalability and managed infrastructure:
// Azure ML training script (C#)
using Microsoft.ML;
using Azure.Storage.Blobs;
public class AzureMLTraining
{
public static void Main(string[] args)
{
// Get data from Azure Blob Storage
var connectionString = Environment.GetEnvironmentVariable("AZURE_STORAGE_CONNECTION_STRING");
var containerName = args[0]; // Passed from Azure ML job
var blobServiceClient = new BlobServiceClient(connectionString);
var containerClient = blobServiceClient.GetBlobContainerClient(containerName);
// Download training data
var blobClient = containerClient.GetBlobClient("training-data.csv");
var localPath = "training-data.csv";
blobClient.DownloadTo(localPath);
// Train ML.NET model
var mlContext = new MLContext();
var data = mlContext.Data.LoadFromTextFile<ModelData>(localPath, hasHeader: true);
var pipeline = /* ... define pipeline ... */;
var model = pipeline.Fit(data);
// Save model to Azure ML
var modelPath = args[1]; // Output path from Azure ML
mlContext.Model.Save(model, data.Schema, modelPath);
}
}
// Azure ML Python SDK to submit job
// Python code to submit C# training job
from azure.ai.ml import MLClient, command
from azure.identity import DefaultAzureCredential
ml_client = MLClient(DefaultAzureCredential(), ...)
job = command(
code="./mlnet-training",
command="dotnet run --project TrainingProject.csproj",
environment="dotnet-env:1",
compute="cpu-cluster",
inputs={
"data": Input(type="uri_file", path="azureml://datastores/workspaceblobstore/paths/data/")
},
outputs={
"model": Output(type="uri_folder", path="azureml://datastores/workspaceblobstore/paths/models/")
}
)
ml_client.jobs.create_or_update(job)Model Evaluation and Metrics
Understanding Evaluation Metrics
Interview Question: "What metrics would you use to evaluate a binary classification model?"
Answer: For binary classification: Accuracy, Precision, Recall, F1-Score, AUC-ROC. For regression: R-Squared, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE). Choose metrics based on business requirements (e.g., precision for spam detection, recall for disease diagnosis).
// Binary classification metrics
var metrics = mlContext.BinaryClassification.Evaluate(predictions, labelColumnName: "Label");
Console.WriteLine($"Accuracy: {metrics.Accuracy:P2}");
Console.WriteLine($"Precision: {metrics.PositivePrecision:P2}");
Console.WriteLine($"Recall: {metrics.PositiveRecall:P2}");
Console.WriteLine($"F1-Score: {metrics.F1Score:P2}");
Console.WriteLine($"AUC-ROC: {metrics.AreaUnderRocCurve:P2}");
// Confusion matrix
Console.WriteLine($"True Positives: {metrics.ConfusionMatrix.GetCountForClass(1, 1)}");
Console.WriteLine($"False Positives: {metrics.ConfusionMatrix.GetCountForClass(0, 1)}");
Console.WriteLine($"True Negatives: {metrics.ConfusionMatrix.GetCountForClass(0, 0)}");
Console.WriteLine($"False Negatives: {metrics.ConfusionMatrix.GetCountForClass(1, 0)}");
// Regression metrics
var regressionMetrics = mlContext.Regression.Evaluate(predictions, labelColumnName: "Price");
Console.WriteLine($"R-Squared: {regressionMetrics.RSquared:P2}");
Console.WriteLine($"MAE: {regressionMetrics.MeanAbsoluteError:F2}");
Console.WriteLine($"RMSE: {regressionMetrics.RootMeanSquaredError:F2}");Advanced ML.NET Topics
Custom Transformers
Creating custom transformers extends ML.NET capabilities:
// Custom transformer example
public class CustomNormalizer : IEstimator<ITransformer>
{
private readonly string _inputColumn;
private readonly string _outputColumn;
public CustomNormalizer(string inputColumn, string outputColumn)
{
_inputColumn = inputColumn;
_outputColumn = outputColumn;
}
public ITransformer Fit(IDataView input)
{
// Calculate statistics
var stats = CalculateStatistics(input);
return new CustomNormalizerTransformer(stats, _inputColumn, _outputColumn);
}
public SchemaShape GetOutputSchema(SchemaShape inputSchema)
{
return new SchemaShape(new[]
{
new SchemaShape.Column(_outputColumn, SchemaShape.Column.Vector.Single)
});
}
}
// Usage in pipeline
var pipeline = mlContext.Transforms.CustomMapping(
(input, output) => { /* custom logic */ },
contractName: "CustomTransform")
.Append(/* other transforms */);Real-World Interview Questions
Question 1: ML.NET vs Python ML Libraries
Answer: ML.NET is ideal for .NET ecosystems, provides better integration with existing .NET codebases, and can run on edge devices. Python libraries (scikit-learn, TensorFlow) offer more algorithms, larger community, and better research support. Choose based on your tech stack and requirements.
Question 2: How do you handle feature engineering in ML.NET?
Answer: ML.NET provides built-in transformers for common feature engineering tasks: text featurization, categorical encoding, normalization, missing value handling. For custom features, create custom transformers or preprocess data before loading into ML.NET.
Behavioral Interview Tips
Discussing ML.NET Experience
- Describe projects where you integrated ML into .NET applications
- Explain how you handled model versioning and deployment
- Share experiences with model performance tuning
- Discuss collaboration between .NET developers and data scientists
- Talk about challenges in production ML.NET deployments
Conclusion
ML.NET and Azure ML provide powerful tools for .NET developers to implement machine learning solutions. Focus on understanding the ML.NET pipeline, common ML tasks, evaluation metrics, and integration patterns with Azure. Practice building end-to-end ML solutions and be prepared to discuss trade-offs between ML.NET and other ML frameworks.
Related Articles
Azure AI Deployment Interview Preparation: Production-Ready ML Models
Complete guide to Azure AI deployment interview questions covering Azure ML, Cognitive Services, model deployment strategies, and cloud architecture patterns.
.NET Interview Questions and Answers: Complete Guide for 2025
Comprehensive .NET interview preparation guide covering core concepts, advanced topics, coding challenges, and real-world scenarios for .NET developers.
C# Async Programming Interview Guide: Master Async/Await Patterns
Deep dive into C# async programming interview questions covering async/await, Task patterns, deadlocks, performance optimization, and real-world scenarios.